ILLUMINATING EDUCATION WITH INFRARED

Bringing thermal imaging into the classroom

www.flir.com/education
THERMAL IMAGING IN A CLASSROOM

FLIR thermal cameras give students the opportunity to learn about heat and temperature in an interactive and engaging way. Instead of reading about friction they’re able to see how it works in real life. Rather than explain insulation, they can see firsthand the rate and speed of heat loss. FLIR gives students the ability to discover the science behind everyday science.

MAKING SCIENCE PHENOMENA EASY TO UNDERSTAND

Many concepts that involve heat and heat transfer are very theoretical and not always easy for students to understand. A thermal imaging camera makes theory clearly visible making it easy for teachers to explain. A few concepts that can be easily visualized with a thermal imaging camera include:

- Thermal properties of materials and objects
- Heat conduction, convection, & radiation
- Heat insulation
- Friction
- Energy transformation
- Phase change

FLIR Systems has collected examples of how thermal imaging can be used in the classroom. These include both student and teacher guidelines of how to conduct the experiment. For an overview of available experiments please consult our website: www.flir.com/education

FLIR C2: PERFECT TOOL FOR VISUALIZING TEMPERATURE

The FLIR C2 is a full-featured, pocket-sized thermal camera. Affordable, lightweight and small it is the perfect tool for classroom use.

FLIR C2 produces thermal images of 80 x 60 pixels. Temperatures can be read from each of the 4,800 pixels. Images can be stored inside the camera and recalled for on camera analysis. Additionally, the C2 Education Kit includes software for real-time streaming and recording of thermal movies. Thermal images and movies can be replayed in the software for on PC analysis.

FLIR C2 is easy-to-use. A brilliant 3” intuitive touch screen with auto orientation allows easy and quick access to all camera functions.

FLIR C2 also incorporates a visible camera. FLIR patented Multi-Spectral Dynamic Imaging (MSX) overlays the thermal image with the visual image so that you get clear easy to understand thermal images.

Thermal images from the FLIR C2 can be easily downloaded to a PC, Mac or tablet for viewing and analysis.
SPECIAL PRICE
EDUCATIONAL KIT

FLIR Systems is bringing the power of thermal imaging to elementary schools, high schools and other educational institutes with the special priced C2 Education Kit.

FLIR C2 Education Kit includes:
- FLIR C2 thermal imaging camera
- Tripod mount
- ResearchIR Software
- Access to FLIR education content with lectures, experiments and teacher’s guides.

This kit is available with an exclusive discount for educators and students. It has been specifically designed as a complementary technology to classroom instruction and student labs.

KEY FEATURES

1. Light, slim profile
2. Bright 3” touchscreen
3. Built-in LED work light & flash
4. Big snapshot button stores thermal, visible, and MSX in each JPEG
5. Easy-access on-off button powers up fast
6. USB Micro-B File transfer and data streaming
7. Visible Camera
8. Thermal Camera
9. Intuitive User Interface
A thermal imaging camera records the intensity of radiation in the infrared part of the electromagnetic spectrum and converts it to a visible image. Our eyes are detectors that are designed to detect electromagnetic radiation in the visible light spectrum. All other forms of electromagnetic radiation, such as infrared, are invisible to the human eye.

The primary source of infrared radiation is heat or thermal radiation. We experience infrared radiation every day. The heat that we feel from sunlight, a fire or a radiator is all infrared. Although our eyes cannot see it, the nerves in our skin can feel it as heat. The warmer the object, the more infrared radiation it emits.

Infrared energy was discovered in 1800 by astronomer Sir Frederick William Herschel. In an effort to learn more about why different colors of light had different temperatures, he directed sunlight through a glass prism to create a spectrum and then measured the temperature of each color. He found that the temperatures of the colors increased from violet to red.

After noticing this pattern Herschel decided to measure the temperature just beyond the red portion of the spectrum in a region where no color was visible. To his surprise, he found that this region had the highest temperature of all. Go to www.FLIR.com/Herschel to watch the full video story.

Infrared energy was discovered in 1800 by astronomer Sir Frederick William Herschel. In an effort to learn more about why different colors of light had different temperatures, he directed sunlight through a glass prism to create a spectrum and then measured the temperature of each color. He found that the temperatures of the colors increased from violet to red.