THERMAL IMAGING FOR MACHINE VISION AND INDUSTRIAL SAFETY APPLICATIONS
FLIR thermal imaging systems use state-of-the-art infrared imaging technology that detects infrared radiation - or heat. Based on detected temperature differences, thermal imaging cameras produce a visible image of a target’s thermal profile. Advanced algorithms also make it possible to read correct temperature values from this image.

We design and manufacture all of the critical technologies inside our products, including detectors, electronics, and lenses.

Thermal imaging cameras for machine vision applications
FLIR knows that a machine vision environment is totally different from any other environment in which thermal imaging cameras are being used. That is why we are designing and developing a dedicated product range for these types of applications. These cameras are designed and developed in our state-of-the-art facility in Taby, Sweden.

Thermal imaging for automation
FLIR thermal imaging cameras are ideal for a wide range of automation applications when flexibility and unequal performance are vital. Accuracy, reliability, sensitivity and high performance are also vitally important. That’s why FLIR thermal imaging cameras are widely used around the world for a wide variety of automation applications.

FLIR Systems Sweden

Inspection of a windshield defroster for damaged electrical elements.

Product development

Thermal image of a car engine.

FLIR is the world leader in the design and manufacturing of thermal imaging systems for a wide variety of commercial, industrial and government applications.
MACHINE VISION (MONITOR PRODUCTION PROCESSES CONTINUOUSLY)

Many industries can take advantage of implementing thermal imaging cameras that continuously monitor production. In some cases the data acquired by a thermal imaging camera can be used to improve the production process.

Thermal imaging cameras for automated inspections
For many applications, such as the production of parts and components for the automotive or electronics industry, thermal data are critical. While machine vision can see a production problem, it cannot detect thermal irregularities. Thermal imagery provides much more information to production specialists and decision makers.

Food inspection
In the food industry, it’s essential to carefully control the temperature and shape of perishable goods throughout production, transportation, storage, and sales. Food processors need tools that automate crucial operations in a way that helps minimize human error while holding down costs.

Automotive industry
New vehicles are subjected to a number of individual and automated quality control tests. Many automobile manufacturers are using thermal imaging cameras for quality control. Typical applications include inspection of rear window heating, heated seats, checking exhaust flaps, air-conditioning outlets and more.

Electronic components
Cutting down failure rates of electronic components is essential for companies that want to supply a perfect product to their customers. The only way to ensure this is by checking each individual component to provide 100% quality control.

Packaging
Thermal imaging cameras make a clear distinction between what is hot and what is not. This, combined with emissivity effects, sometimes allows thermal imaging cameras to “see through” plastic or other material.
Thermal imaging cameras for process control
Assuring quality control, deciding if a product is 100% to specifications, whether it is “good or bad” is just one step. Thermal imaging cameras can help to do this and more. Often thermal imaging cameras provide valuable data about the production process. Production engineers can use these data to improve the entire production process.

Automotive industry
Cars need to be light and strong. To achieve both of these goals, modern car panels are made of a combination of a metal layer on top and a structural adhesive layer underneath. These layers are glued together using induction. The temperature has to be exactly right for the adhesion to work properly. To ensure that the adhesion goes smoothly, FLIR thermal imaging cameras can provide automatic feedback during the process.

Glue bead verification
Clear glue or black glue applied to a black background is very difficult for a visible light camera to see and measure. FLIR automation cameras, however, can easily determine whether the glue bead has been applied properly, has gaps, and even if it is within the allowable temperature limits.

Paper moisture characterization
Paper quality can be affected by variations in moisture. FLIR thermal automation cameras pick up the temperature differences caused by moisture variations to help paper mills keep their processes in control.

Weld inspection
Spot and linear welds can be inspected in real time by FLIR thermal automation cameras.
INDUSTRIAL SAFETY

Safety is important in any industry. Accidents and fire need to be avoided and production needs to be running at all times. Thermal imaging cameras can help to ensure safety and avoid unplanned outages.

Condition monitoring
Condition monitoring is all about identifying problems before failure occurs in order to prevent costly production stops. Typical equipment that is monitored includes high- and low-voltage installations, turbines, compressors and other electrical and mechanical equipment. Sometimes processes need to be monitored because an anomaly can cause dangerous situations.

Flare monitoring
Flares, that often have a flame that is not visible to the naked eye, need to be monitored to see if they are effectively burning the produced gasses. A thermal imaging camera can help do this.

Substation monitoring
Utilities are looking for ways to address these issues in order to improve the reliability of electric power delivery while at the same time reducing costs. By using FLIR thermal imaging cameras and automation software, impending equipment failures and security breaches can be detected anytime, day or night, at a remote monitoring location.

Steel ladle monitoring
Steel mill ladles have limited lives. As their refractory linings wear or develop breaks due to shock, the outer part of a ladle can be exposed to excessive temperatures. If not caught in time, the result can be ladle disintegration and a molten metal breakout, threatening the lives of workers and destroying equipment.

Continuous monitoring of electrical / mechanical installations
Some critical electrical and mechanical installations are monitored 24/7 with a thermal imaging camera. A fixed mounted thermal imaging camera gives you the advantage, so you don’t need to rely on periodic inspections. Alarms can be set to go off once a temperature threshold is exceeded.
Fire prevention/detection
Fire can destruct entire premises and storage areas within an extremely short timeframe. The value of the destroyed goods during a fire can be tremendous, and the cost of a life that is lost during a fire is impossible to calculate. Statistics show high increase in asset loss due to fire. Thermal imaging can help prevent fires or detect them in an early stage.

Warehouse fire prevention
FLIR thermal imaging cameras provide an early warning response to hot spots that are detected. This is important for all types of warehouses. By detecting hot spots in an early stage, warehouse fires can be avoided.

Combustible pile monitoring
Storage of some material brings along the risk of spontaneous fires. As always, prevention is better than cure. A thermal imaging camera from FLIR can help to ensure safety and detect spontaneous self-combustion. The system provides a cost-effective solution for continuous, remote monitoring of temperatures. Typical examples are coal piles, wood chips, ore milling?, fertilizers, etc.

Waste bunker monitoring
Waste is potentially flammable when stored. Self-combustion, heat development due to pressure, spontaneous chemical reactions between the disposals and methane gas-building are potential fire creators. Thermal imaging cameras can help prevent fires.

Hot spot detection
Electrical or mechanical installations tend to get hot before they fail. A small electrical problem can have severe consequences. Not only can production break down but sparks can fly, resulting in a dangerous fire. By monitoring electrical and mechanical installations 24/7, thermal imaging cameras can help avoid fires.
CONTINUOUS OPTICAL GAS IMAGING (OGI)

Thermal imaging cameras can visualize and pinpoint gas leaks. With an optical gas imaging camera it is easy to continuously scan installations that are in remote areas or in zones that are difficult to access. Continuous monitoring means that you will immediately be informed when a dangerous or costly gas leak appears so that immediate action can be taken.

Offshore and petrochemical industry
Many chemical compounds and gases are invisible to the naked eye, yet many companies work intensively with these substances before, during and after their production processes. A fixed mounted OGI can monitor critical areas 24/7. They can be carried out remotely, rapidly and – most important of all – problems can be identified at an early stage.

Pipeline inspection
Leak detection of gases can be performed in a non-contact mode, and from a safe distance. This reduces the risk of the inspector being exposed to invisible and potentially harmful or explosive chemicals. With an optical gas imaging camera it is easy to scan areas of interest that are difficult to reach with conventional methods. A typical application is the continuous inspection of remote pipelines.

Greatly improved efficiency
Experience shows that up to 84 percent of leaks occur in less than one percent of the components in a refinery. This means that 99 percent of what are expensive, time-consuming inspection tools are being used to scan safe, leak-free components.

Protect the Environment
Several gases have a high global warming potential, and strict regulations govern how companies trace, document, rectify and report any leaks of harmful gaseous compounds, and how often these procedures are to be carried out.
SOFTWARE SOLUTIONS

In order to fully utilize the FLIR A-Series cameras and integrate them into working systems for safety and automation, the A-Series offer a set of software tools and utilities. Further information regarding downloads and updates is available at http://flir.custhelp.com/

GENERAL

IP Config (AX8, A3xx, A6xx, Ax5 only)
Utility program for network camera detection and IP address setting, the program comes with the Utility CD in the delivery box or can be downloaded from FLIR Custhelp.

FLIR Tools (A3xx, A6xx, Ax5 only)
The FLIR Axx-Series thermal imaging cameras work seamlessly together with FLIR Tools. It allows for viewing and analyzing thermal images and includes functions such as time versus temperature plots. Users who need more functionality and also want to be able to record images can optionally choose FLIR Tools+.

FOR MACHINE VISION (A315/A615/AX5)

- FLIR GigE Vision compliant SDKs
 For application development, a Pleora eBus SDK or FLIR GEV Demo sample can be downloaded from FLIR Custhelp.
- FLIR Camera Player
 Utility program for first camera connection and streamed image viewing, the program comes with the Utility CD in the delivery box or can be downloaded from FLIR Custhelp.
- GigE Vision and GenICam compliance
 Machine Vision camera standard supported in many third-party image processing software.

FOR INDUSTRIAL SAFETY (AX8/A310/A310 PT/A310 F)

- FLIR IR Monitor (A310, A310f without Nexus)
 Utility program for first camera connection and control and setup of internal features/functions, supports up to 9 cameras simultaneously, the program comes with the Utility CD in the delivery box or can be downloaded from FLIR Custhelp.
- Built-in Web server (AX8, A310)
 Simple built-in camera control and image viewer, connect using http://“camera ip adress” in a Web browser or connect through the IP Config program. AX8 WEB interface is a complete setup and control interface for the camera.
- Ethernet/IP or Modbus TCP (AX8, A310)
 Industrial Field bus protocols, allows Analyze, Alarm and Camera control to be shared with PLC’s. This function is always turned on in the A310 Camera.
- ThermoVision SDK (A310)
 An ActiveX component that allows camera control and image grabbing and transformation, purchased separately.
- FLIR Sensors Manager (A310pt, A310f with Nexus)
 Manage and control A310 f and A310 pt cameras in a TCP/IP network.
ACCESSORY SOLUTIONS

In today’s fast-changing environment, requirements for purchased capital equipment can change from year to year or from project to project. Things that are vital today can be redundant tomorrow. That makes it important for the equipment in which you invest to be flexible enough to meet the ever-changing needs of your applications.

No other infrared camera manufacturer offers a wider variety of accessories than FLIR Systems.

Optics – From microscope optics that resolve down to 3 μm to 1 meter telescopes, FLIR has the right optic for your application needs.

Mounts & Stands – FLIR offers multiple options for mounting camera systems including tripods and microscope stands.

Cables and Connectors – Fiber optic converters, fiber cable, extended cablelengths, and camera link PC cards are just a few of the options available from FLIR to help you meet any application requirement.

AFTER SALES SERVICE

At FLIR, building a relationship with a customer takes more than just selling a thermal imaging camera. After the camera has been delivered, FLIR is there to help meet your needs.

Because FLIR designs and manufactures their cameras from the sensor up, they can quickly troubleshoot and effectively service all aspects of FLIR camera systems. FLIR Systems offers different types of service contracts. A service contract offers you the advantage that you will never have unforeseen expenses if something should happen to your thermal imaging camera after the warranty period. Some service contracts even guarantee that you will have a replacement camera at your service if necessary.
A FULL PRODUCT RANGE FOR THE MOST DEMANDING AUTOMATION APPLICATIONS

FLIR Systems is active in all markets where the power of thermal imaging is being used for the most diverse applications. Whether it is for non-contact temperature measurement applications such as condition monitoring, automation of firefighting or for night vision applications such as security and maritime, FLIR Systems markets a full range of cameras that is totally dedicated to the needs of the user.

The same goes for Machine Vision. Whether you are monitoring a production process, doing continuous condition monitoring in a substation, involved in fire prevention or monitoring installations for gas leaks, FLIR Systems has the correct thermal imaging camera for your application.

Technical specifications of our products can be consulted on our website or ask for a product leaflet.